Primary hyperideals of multiplicative hyperrings

E. Sengelen Sevim1,*, B. A. Ersoy2 and B. Davvaz3

Istanbul Bilgi University, Department of Mathematics, 34440, Istanbul, Turkey1
Yildiz Technical University, Department of Mathematics, 34220, Istanbul, Turkey2
Yazd University, Department of Mathematics, Yazd, Iran3

Abstract. In this article, we study prime, primary, C-hyperideals of multiplicative hyperrings in the sense of Rota [14]. Prime hyperideal avoidance lemma was proved in [4]. We mainly study union of primary hyperideals in hyperring. Among many results in this study we give the primary hyperideal avoidance lemma. Also we determine all prime, primary, C-ideals of quotient hyperring.

2010 Mathematics Subject Classifications: 16Y99, 20N20

Key Words and Phrases: multiplicative hyperring; prime hyperideal; primary hyperideal

1. Introduction

The study of hyperstructures dates back to [8]. In 1934, during the 8th congress of Scandinavian Mathematicians, F. Marty introduced hypergroups as a generalization of groups. So far, it has been a developing area and many mathematicians has studied on hyperstructures. See [2,3,8,11]. One of the main reason for studying hyperstructures, it has a wide variety of applications to other areas such as geometry, lattices, automata, cryptography, coding theory, artificial intelligence and probabilities [3].

In [6], Krasner introduced the hyperrings in a study of approximations of complete valued fields. He defined \((R, +, \circ)\) as a hyperring with the following properties: (i) \((R, +)\) is a canonical hypergroup, (ii) \((R, \circ)\) is a semigroup and (iii) binary operation \(\circ\) is distributive over addition. The theory of hyperrings has been developed by many researchers. See [5-6,9,12-14]. There are various types of hyperrings and one of the important classes of hyperrings, called multiplicative hyperring, was introduced by Rota in [14]. Rota called \((R, +, \circ)\) a multiplicative hyperring if (i) \((R, +)\) is an abelian group, (ii) \((R, \circ)\) is a hypersemigroup, (iii) \(a \circ (b + c) \subseteq a \circ b + a \circ c\) and (iv) \(a \circ (-b) = -(a \circ b)\) for all \(a, b, c \in R\). Here, we mean a hypersemigroup by a nonempty set \(R\) with an associative hyperoperation \(\circ\), i.e,

\[
a \circ (b \circ c) = \bigcup_{t \in (b \circ c)} a \circ t = \bigcup_{s \in (a \circ b)} s \circ c = (a \circ b) \circ c
\]

for all \(a, b, c \in R\). Further, if \(R\) is a multiplicative hyperring with \(a \circ b = b \circ a\) for all \(a, b \in R\), then \(R\) is called a commutative multiplicative hyperring.

*Corresponding author.

Email address: esengelen@bilgi.edu.tr* (Corresponding author)

http://www.ibujournals.com © 2018 IBJM All rights reserved.
Throughout, all hyperrings are assumed to be commutative hyperrings in the sense of Rota [14]. In particular, \(R \) always denotes such a hyperrings. For any two nonempty subsets \(K, L \) of \(R \), we define

\[
K \odot L = \bigcup_{k \in K,i \in L} k \odot i.
\]

Also by induction we can mention that product of finitely many nonempty subsets of \(R \). As well we denote the sum of the set \(a \odot b \) at \(k \) times by \(k(a \odot b) = \{x_1 + x_2 + \ldots + x_k : x_i \in a \odot b \text{ for } 1 \leq i \leq k\} \). Suppose that \(I \) is an additive subgroup of \(R \). If \(r \odot a \subseteq I \) for all \(r \in R \) and \(a \in I \), then \(I \) is called a hyperideal of \(R \). Let \(I \) be a hyperideal of \(R \). Then \(I \) is said to be a \(C \)-ideal if \(a_1 \odot a_2 \odot \ldots \odot a_n \cap I \neq \emptyset \), for \(n \in \mathbb{N}, a_i \in R, 1 \leq i \leq n \), imply that \(a_1 \odot a_2 \odot \ldots \odot a_n \subseteq I \) [4].

Prime ideal has a distinguished place in commutative algebra. It is useful tool for understanding ideal structure of rings. There are several studies on this issue. See [1,7]. Also, Primeness of hyperideals was first studied by Processi and Rota in [13]. Recall that a proper hyperideal \(P \) of \(R \) is said to be a prime hyperideal if the condition \(a \odot b \subseteq P \) implies either \(a \in P \) or \(b \in P \) [13]. After that, in [4] Dasgupta studied on prime and primary hyperideals in hyperrings. A proper hyperideal \(Q \) of \(R \) is called a primary hyperideal if \(a \odot b \subseteq Q \) then either \(a \in Q \) or \(b^n \subseteq Q \) for some \(n \in \mathbb{N} \) [4]. For any given hyperideal \(I \) of \(R \), \(\sqrt{I} \) denote the intersection of all prime hyperideals containing \(I \), if there is no such prime hyperideal of \(R \), we assume that \(\sqrt{I} = R \). Also the hyperideal \(\{r \in R : r^n \subseteq I \text{ for some } n \in \mathbb{N}\} \) will be designated by \(D(I) \) and note that the inclusion \(D(I) \subseteq \sqrt{I} \) always holds. In addition, if \(I \) is a \(C \)-ideal of \(R \), other inclusion holds by Proposition 3.2 of [4].

In this paper, our aim is to study union of primary hyperideals in hyperrings. Among many results in this paper we give primary hyperideal avoidance theorem with Theorem 2.6. Let \((R, +, \odot)\) and \((R', +, \odot)\) be two hyperrings and \(f : R \to R' \) a function such that \(f(a + b) = f(a) + f(b) \) and \(f(a \odot b) \subseteq f(a) \odot f(b) \) for all \(a, b \in R \). Then \(f \) is called a homomorphism. In particular \(f \) is called a good homomorphism in case \(f(a \odot b) = f(a) \odot f(b) \) [5]. Furthermore, the kernel of a homomorphism is defined as \(Ker(f) = f^{-1}(\{0\}) = \{r \in R : f(r) \in \{0\}\} \) and note that \(f(r) \) may not be a zero element. From Proposition 2.7 to Corollary 2.12 we investigate the prime, primary, \(C \)-hyperideals under good homomorphism and determine all prime, primary, \(C \)-hyperideal of any quotient hyperring. Finally we extend the primary hyperideal avoidance theorem to cosets of any quotient hyperring.

For more detail and terminology on hyperrings, the reader may consult [5].

2. Primary hyperideals in multiplicative hyperrings

Throughout, \(R \) denotes a commutative multiplicative hyperring.

Definition 2.1. Let \(Q \) be a proper hyperideal of \(R \). Then \(Q \) is called a primary hyperideal of \(R \) if for each \(a, b \in R \) and whenever \(a \odot b \subseteq Q \) then either \(a \in Q \) or \(b^n \subseteq Q \) for some \(n \in \mathbb{N} \) [4].

Lemma 2.2. Suppose that \(Q \) is a primary \(C \)-hyperideal of \(R \). Then \(\sqrt{Q} \) is a prime \(C \)-hyperideal of \(R \).

Proof. By [4, Proposition 3.6] we know that \(\sqrt{Q} \) is a prime hyperideal. Now we show that \(\sqrt{Q} \) is a \(C \)-ideal of \(R \). Let \(a_1 \odot a_2 \odot \ldots \odot a_n \cap \sqrt{Q} \neq \emptyset \) for some \(a_1, a_2, \ldots, a_n \in R \). Then we have \(x \in a_1 \odot a_2 \odot \ldots \odot a_n \) such that \(x \in \sqrt{Q} \). This implies that \(x^t \subseteq (a_1 \odot a_2 \odot \ldots \odot a_n)^t \) and \(x^t \subseteq Q \) for some \(t \in \mathbb{N} \). Since \(Q \) is a \(C \)-ideal and \((a_1 \odot a_2 \odot \ldots \odot a_n)^t \cap Q \neq \emptyset \), we get \((a_1 \odot a_2 \odot \ldots \odot a_n)^t \subseteq Q \) and so \((a_1 \odot a_2 \odot \ldots \odot a_n) \subseteq \sqrt{Q} \). Hence \(\sqrt{Q} \) is a \(C \)-ideal of \(R \).

In [2], author proved prime hyperideal avoidance theorem for \(C \)-ideals: Let \(P_1, P_2, \ldots, P_n \) be prime \(C \)-hyperideals such that \(I \subseteq P_1 \cup P_2 \cup \ldots \cup P_n \) then \(I \subseteq P_i \) for some \(1 \leq i \leq n \). Actually
the condition of C-ideal is not necessary. Further if at most two of \(P_i \)’s are not prime hyperideal, then the result is also valid. Now we prove the primary avoidance theorem but first we give some results we need.

Lemma 2.3. Let \(Q \) be a proper hyperideal of \(R \). Then \(Q \) is primary hyperideal if and only if \(J \circ K \subseteq Q \) implies either \(J \subseteq Q \) or \(K \subseteq D(Q) \), where \(J, K \) are hyperideals of \(R \).

Proof. Suppose that \(Q \) is primary hyperideal of \(R \) such that \(J \circ K \subseteq Q \) and \(J \nsubseteq Q \). Then there exists an element \(j \notin Q \) for some \(j \in J \). Take any \(k \in K \). Then we have \(j \circ k \subseteq J \circ K \subseteq Q \). Since \(Q \) is primary hyperideal, we have \(k^n \subseteq Q \) and so \(k \in D(Q) \). This implies that \(K \subseteq D(Q) \). Conversely, let \(a \circ b \subseteq Q \) for some \(a, b \in R \). Then we have \(\langle a \circ b \rangle \subseteq Q \). Take any \(t \in \langle a \rangle \) and \(s \in \langle b \rangle \). Then

\[
t = \sum_{i=1}^{n_r} x_i + n'_i a \quad \text{for some } n'_i \in \mathbb{Z} \quad \text{and} \quad x_i \in r_i \circ a \quad \text{and also } \quad s = \sum_{i=1}^{n_s} y_i + s'_i a \quad \text{for some } s'_i \in \mathbb{Z} \quad \text{and} \quad y_i \in r'_i \circ b.
\]

This implies that \(t \circ s = \left(\sum_{i=1}^{n_r} x_i + n'_i a \right) \circ \left(\sum_{i=1}^{n_s} y_i + s'_i a \right) \subseteq \sum_{i=1}^{n_r} \sum_{j=1}^{n_s} x_i \circ y_j + n'_i s'_i \sum_{i=1}^{n_r} a \circ y_i + s'_i \sum_{i=1}^{n_s} x_i \circ b + n'_i s'_i (a \circ b) \subseteq \langle a \circ b \rangle \subseteq Q \) and so \(\langle a \rangle \circ \langle b \rangle \subseteq Q \). Then we have either \(\langle a \rangle \subseteq Q \) or \(\langle b \rangle \subseteq D(Q) \). Thus we get \(a \in Q \) or \(b^n \subseteq Q \) for some \(n \in \mathbb{N} \).

By induction hypothesis one can easily obtain following result:

Corollary 2.4. If \(Q \) is a primary hyperideal of \(R \) such that \(J_1 \circ J_2 \circ \ldots \circ J_n \subseteq Q \) then either \(J_i \subseteq Q \) or \(J_i \subseteq D(Q) \) for some \(2 \leq i \leq n \).

Let \(I \subseteq Q_1 \cup \ldots \cup Q_n \) be a covering of hyperideals of \(R \). Then this covering is called efficient if none of the \(Q_i \)’s are superfluous. Note that a covering by two hyperideals can not be efficient.

Proposition 2.5. Suppose that \(I \subseteq Q_1 \cup \ldots \cup Q_n \) is an efficient covering of hyperideals of \(R \), where \(I \) is a hyperideal of \(R \). If \(\sqrt{Q_i} \nsubseteq \sqrt{Q_j} \) for each \(i \neq j \), then any of \(Q_i \)’s are not primary hyperideal of \(R \).

Proof. First we show that \(\sqrt{I} = \sqrt{D(J)} \) for any hyperideal \(J \) of \(R \). The inclusion \(\sqrt{I} \subseteq \sqrt{D(J)} \) always holds. Take a prime hyperideal \(P \) containing \(J \). Then it is sufficient to show that \(P \) contains \(D(J) \). Let \(x \in D(J) \). Then we have \(x^n = x \circ x \circ \ldots \circ x \subseteq J \subseteq P \) for some \(n \in \mathbb{N} \). This yields \(x \in P \) and thus \(\sqrt{D(J)} \subseteq \sqrt{I} \). Since covering is efficient, we have \(n > 2 \). Assume that \(Q_1 \) is a primary hyperideal of \(R \). Again since the covering is efficient, we have \(I \cap Q_2 \cap Q_3 \cap \ldots \cap Q_n \subseteq I \cap Q_1 \subseteq Q_1 \) by [10]. As \(I \nsubseteq Q_1 \) and \(I \circ Q_2 \circ \ldots \circ Q_n \subseteq Q_1 \), by previous corollary, there exists \(2 \leq j \leq n \) such that \(Q_j \subseteq D(Q_1) \) and so \(\sqrt{Q_j} \subseteq \sqrt{D(Q_1)} \). This is a contradiction.

By the following theorem we can obtain prime hyperideal avoidance theorem in [4, Proposition 2.19] without assumption C-ideal.

Theorem 2.6. Suppose that \(I \subseteq Q_1 \cup \ldots \cup Q_n \) is a covering and at most two of \(Q_i \)’s are not primary hyperideal of \(R \). If \(\sqrt{Q_i} \nsubseteq \sqrt{Q_j} \) for each \(i \neq j \), then \(I \nsubseteq Q_i \) for some \(1 \leq i \leq n \).

Proof. If \(n = 2 \), then the result is valid. Also we may assume that the covering is efficient so \(n \neq 2 \). Suppose \(n > 2 \). But in this case, there exists a primary hyperideal \(Q_j \) of covering and this contradicts by Proposition 2.5. So we have \(n = 1 \) and this completes the proof.

Proposition 2.7. Let \(f : R \to S \) be a good homomorphism and \(I, J \) be hyperideals of \(R \) and \(S \), respectively. Then the followings are satisfied:
Let Proposition 2.8.

(ii) If J is a prime hyperideal of S, then $f^{-1}(J)$ is a prime hyperideal of R.

Proof. (i) It is easy to see that $f(I)$ is a hyperideal of S since f is good epimorphism. Let $f(a) \circ f(b) \subseteq f(I)$ for $a, b \in R$. Since f is homomorphism, $f(a \circ b) \subseteq f(a) \circ f(b) \subseteq f(I)$. Now take any $t \in a \circ b$. Then we have $f(t) \subseteq f(a \circ b) \subseteq f(I)$ and so $f(t) = f(x)$ for some $x \in I$. This implies that $f(t - x) = 0 \in (I)$, that is, $t - x \in Ker(f) \subseteq I$ and so $t \in I$. Thus we conclude that $a \circ b \subseteq I$. Since I is prime hyperideal of R, we get $a \in I$ or $b \in I$ and so either $f(a) \in f(I)$ or $f(b) \in f(I)$. Consequently $f(I)$ is prime hyperideal of S.

(ii) First note that $f^{-1}(J)$ is a hyperideal of R. Let $a \circ b \subseteq f^{-1}(J)$ for $a, b \in R$. Then we have $f(a \circ b) = f(a) \circ f(b) \subseteq J$. Since J is prime hyperideal of S, we have $f(a) \in J$ or $f(b) \in J$ and so either $a \in f^{-1}(J)$ or $b \in f^{-1}(J)$.

Proposition 2.8. Let $f : R \to S$ be a good homomorphism and I, J be hyperideals of R and S, respectively. Then the followings are satisfied:

(i) If I is a prime hyperideal containing $Ker(f)$ and f is a epimorphsim, then $f(I)$ is a prime hyperideal of S.

(ii) If I is a C-hyperideal of S, then $f^{-1}(I)$ is a C-hyperideal of R.

Proof. (i) Let $s_1 \circ s_2 \circ \ldots \circ s_n \cap f(I) \neq \emptyset$ for some $s_1, s_2, \ldots, s_n \in S$. Since f is epimorphsim, we have $f(a_i) = s_i$ for some $a_i \in R, 1 \leq i \leq n$. Then we have $(f(a_1) \circ f(a_2) \circ \ldots \circ f(a_n)) \cap f(I) = f(a_1 \circ a_2 \circ \ldots \circ a_n) \cap f(I) \neq \emptyset$ because f is good homomorphism. So there exists $t \in a_1 \circ a_2 \circ \ldots \circ a_n$ such that $f(t) \in f(I)$. Since $Ker(f) \subseteq I$, we conclude that $t \in I$ and so $a_1 \circ a_2 \circ \ldots \circ a_n \cap I \neq \emptyset$. As I is a C-ideal of R, $a_1 \circ a_2 \circ \ldots \circ a_n \subseteq I$ and so $f(a_1) \circ f(a_2) \circ \ldots \circ f(a_n) = f(a_1 \circ a_2 \circ \ldots \circ a_n) \subseteq f(I)$ that is $s_1 \circ s_2 \circ \ldots \circ s_n \subseteq f(I)$.

(ii) Let $a_1 \circ a_2 \circ \ldots \circ a_n \cap f^{-1}(J) \neq \emptyset$ for some $a_1, a_2, \ldots, a_n \in R$. This implies that $t \in f^{-1}(J)$ for some $t \in a_1 \circ a_2 \circ \ldots \circ a_n$. Let $n \in J \cap f(a_1 \circ a_2 \circ \ldots \circ a_n)$. Then we have $J \cap (f(a_1) \circ f(a_2) \circ \ldots \circ f(a_n)) \neq \emptyset$. Since J is a C-ideal of S, we conclude that $f(a_1) \circ f(a_2) \circ \ldots \circ f(a_n) = f(a_1 \circ a_2 \circ \ldots \circ a_n) \subseteq J$ and so $a_1 \circ a_2 \circ \ldots \circ a_n \subseteq f^{-1}(J)$.

Suppose that J is a hyperideal of R. Then quotient abelian group $R/I = \{a + I : a \in R\}$ becomes a hyperping with the multipication $(a + I) \circ (b + I) = (a + I) \circ (b + I)$ for $a, b \in R$. In this case R/I is called quotient hyperping. One can easily prove that all hyperideal of R/I is of the form J/I, where J is a hyperideal of R containing I, since the natural homomorphism $\pi : R \to R/I, \pi(r) = r + I$ is a good epimorphism.

Proposition 2.9. Let $I \subseteq P$ be hyperideals of R. Then the followings are satisfied.

(i) P is prime hyperideal of R iff P/I is a prime hyperideal of R/I. In particular all prime hyperideal of R/I is of the form P/I, where P is a prime hyperideal of R containing I.

(ii) P is C-hyperideal of R iff P/I is a C-hyperideal of R/I. In particular all C-hyperideal of R/I is of the form P/I, where P is a C-hyperideal of R containing I.

Proof. (i) Consider the natural homomorphism $\pi : R \to R/I$ defined by $\pi(r) = r + I$. Since f is good epimorphism, the claim follows from Proposition 2.7.
(ii) It follows from Proposition 2.8.

Corollary 2.10. Suppose that $I \subseteq J$ are hyperideals of R. Then the followings are satisfied:

(i) $\sqrt{J/I} = \sqrt{J}/I$.

(ii) $D(J/I) = D(J)/I$.

(iii) If J is a C-hyperideal of R. Then $D(J/I) = \sqrt{J/I}$.

Proof. (i) It follows from Proposition 2.9.

(ii) Let $a + I \in D(J/I)$ for some $a \in R$. Then we have $(a + I)^n \subseteq J/I$. Take any $t \in a^n$. Since $t + I \in (a + I)^n$, we have $t + I \in J/I$ and so $t \in J$. Thus we have $a^n \subseteq J$ and this implies that $a + I \in D(J)/I$. Conversely assume that $a + I \in D(J)/I$ for $a \in R$. Then we have $a \in D(J)$ and so $a^n \subseteq J$ for some $n \in \mathbb{N}$. Take any $t + I \in (a + I)^n$, then we have $t + I = s + I$ for some $s \in a^n$. This implies that $t = s \in I \subseteq J$ and so $t = (t - s) + s \in I + a^n \subseteq J$ and thus $t + I \in J/I$. This implies that $(a + I)^n \subseteq (J/I)$ that is $a + I \in D(J/I)$.

(iii) It follows from [4, Proposition 3.2] and Proposition 2.9.

Proposition 2.11. Let $f : R \rightarrow S$ be a good homomorphism and I, J be hyperideals of R and S, respectively. Then the followings are satisfied:

(i) If I is a primary hyperideal containing $\text{Ker}(f)$ and f is an epimorphism, then $f(I)$ is a primary hyperideal of S.

(ii) If J is a primary hyperideal of S, then $f^{-1}(J)$ is a primary hyperideal of R.

Proof. (i),(ii): The proof is similar to Proposition 2.8.

Corollary 2.12. Let $I \subseteq Q$ be hyperideals of R. Then,

(i) Q is primary hyperideal of R iff Q/I is a primary hyperideal of R/I. In particular all primary hyperideal of R/I is of the form Q/I, where Q is a primary hyperideal of R containing I.

(ii) Suppose that Q is a primary C-hyperideal of R containing I. Then $\sqrt{Q/I}$ is a prime C-hyperideal of R/I.

Proof. (i): Follows from Proposition 2.11.

(ii): Follows from (i), Lemma 2.2, Proposition 2.9 and Corollary 2.10.

Corollary 2.13. Suppose that I is a hyperideal of R. Then primary hyperideal avoidance theorem holds for quotient hyperring R/I.

Proof. It follows from Corollary 2.12 and Theorem 2.6.

Now we extend the primary hyperideal avoidance theorem to cosets of any quotient hyperring. Suppose that J, J_1, J_2, \ldots, J_n are hyperideals of R and $a_i \in R$ for each $i = 1, 2, \ldots, n$. Then we say a covering of cosets $J \subseteq (J_1 + a_1) \cup (J_2 + a_2) \cup \ldots \cup (J_n + a_n)$ is efficient if no cosets is unnecessary. Now we take such an efficient covering of cosets and assume that $a_k = a$ for all $k = 1, 2, \ldots, n$. Then we obtain an efficient covering $J - a \subseteq J_1 \cup J_2 \cup \ldots \cup J_n$. If $n = 1$, then we have $J - a \subseteq J_1$ and so $J \subseteq J_1 + a$. Since $0 \in J$, we get $a \in J_1$, that is, $J \subseteq J_1$.
Lemma 2.14. Suppose that $J \subseteq (J_1 + a_1) \cup (J_2 + a_2) \cup \ldots \cup (J_n + a_n)$ is an efficient covering of cosets, where J, J_1, J_2, \ldots, J_n are hyperideals of R and $a_i \in R$ for each $i = 1, 2, \ldots, n$. Then $J \cap \bigcap_{i \neq k} J_i \subseteq J_k$ but $J \not\subseteq J_k$.

Proof. It is similar to proof of Lemma 4 in [7].

Proposition 2.15. Suppose that Q_1, Q_2, \ldots, Q_n are hyperideals of R and J is a hyperideal such that $J + a \subseteq Q_1 \cup Q_2 \cup \ldots \cup Q_n$ is an efficient covering. If $\sqrt{Q_i} \not\subseteq \sqrt{Q_k}$ for each $i \neq k$, then no Q_i is primary hyperideal of R.

Proof. Assume that Q_1 is primary hyperideal of R. Then by previous lemma, we get $J \cap Q_2 \cap Q_3 \cap \ldots \cap Q_n \subseteq Q_1$ and also $J \not\subseteq Q_1$. Note that $J \circ Q_2 \circ \ldots \circ Q_n \subseteq J \cap Q_2 \cap Q_3 \cap \ldots \cap Q_n \subseteq Q_1$. Then by Corollary 2.4 we get $Q_i \subseteq D(Q_1)$ and so $\sqrt{Q_i} \subseteq \sqrt{Q_1}$ which is a contradiction.

Theorem 2.16. Suppose that Q_1, Q_2, \ldots, Q_n are hyperideals and at most $n - 1$ of them are not primary hyperideal of R. If $\sqrt{Q_i} \not\subseteq \sqrt{Q_k}$ for $i \neq k$ and $J + a \subseteq Q_1 \cup Q_2 \cup \ldots \cup Q_n$, then $J + a \subseteq Q_i$. Further, $J + \langle a \rangle \subseteq Q_i$ for some $i \in \{1, 2, \ldots, n\}$.

Proof. We may assume that covering is efficient. If $n > 1$, there exists a primary C-hyperideal Q_i of R which contradicts by previous proposition. So we have $n = 1$, $J + a \subseteq Q_i$ for some $i \in \{1, 2, \ldots, n\}$. Since $0 \in J$, we have $a \in Q_i$ and so $\langle a \rangle \subseteq Q_i$. As $a \in Q_i$ and $J + a \subseteq Q_i$, we get $J \subseteq Q_i$ and hence $J + \langle a \rangle \subseteq Q_i$.

References

